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Abstract. The phase diagram of the spin-% XX Z model is examined for two different
geometries, which can be changed from two- to three-dimensional. The first of these
consists of an infinite stack of simple quadratic layers with a variable inter-layer coupling,
where the ratio of the inter-layer and intra-layer couplings varies between zero and one.
Second, we consider a slab geometry consisting of n such layers, with equal couplings
in all directions. For both geometries we use the cluster variation method for two-spin
clusters to construct the phase diagram of the model, and we examine the changes that
take place as the system changes from two- to three-dimensional. For the slab geometry
we also calculate the order parameter profile near T¢. It turns out that Dirichlet boundary
conditions for the related superfluid wavefunction are most realistic.

1. Introduction

The behaviour of systems as a function of their spatial dimension is an important
issue in statistical physics. Indeed, some properties, like critical exponents and the
existence of a phase transition, depend almost exclusively on the spatial dimension and
the symmetry of the model. Many of these quantities have been accurately calculated,
e.g. with momentum-space renormalization techniques. In addition to these so-called
universal properties, there are also quantities such as the critical temperature, that do
depend on the details of the geometry and the Hamiltonian of the model. In some
cases real-space renormalization has been successful in calculating these properties.
Also, various series expansion methods have achieved a high accuracy in examining
some specific models. For quantum spin models, however, real-space renormalization
runs into considerable difficulties, while series expansions cannot give a global picture
of the whole phase diagram of more complicated models. This is why practically the
only general method used to deal with such models is the mean-field approximation.
Since this method gives only a crude approximation of the phase diagram, more
sophisticated approaches are needed. In this paper we use a more refined method to
calculate phase diagrams and to study the influence of the spatial dimension on the
details of these diagrams.

In order to study the influence of the dimension on the behaviour of a system, one
may consider geometries that can be made to cross over between different dimensions.
We will examine two quantum spin models that can be changed from two- to three-
dimensional by varyizg a parameter of the model. In the first model we consider
how a collection of uncoupled two-dimensional layers changes into a fully isotropic
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three-dimensional system as the inter-layer coupling is turned on. Second, we turn
to a model consisting of a slab of n such layers, which becomes three-dimensional as
its width approaches infinity. For both models, we will examine the changes in the
phase diagram as these parameters are varied. :
The specific spin model we will be studying is the spin-; XX Z model. Its
Hamiltonian is

N
Hzz:’_Jij("f"f'l“’fU;!)—Jzijofaf-wa‘f- (L.1)
{&j i=1

The sum 37,.., is over nearest-neighbour spins only, and the of' are Pauli matrices.
The spin coupling is anisotropic in spin space, ie. J;; # J,;;, and by choosing
J;; and J,,. to be different for different pairs of spins i and j, it can also be
made anisotropic in real space. In addition to the coupling there is a homogeneous
magnetic field k& in the z direction. We will consider bipartite lattices only, so
an antiferromagnetic phase can always be accommodated without having to take
frustration into account. For such a Jattice we can assume that J;; is positive, ie.
ferromagnetic, since the model is invariant under a change of sign of J;; [1]. (We
do not consider cases where different J;; or J, ,; have different signs.)

The Hamiltonian (1.1) is of interest for two reasons. First, it is interesting in
itself, having two competing interactions, J and J,, and both a continuous symmetry,
for rotations of the spins around the z-axis, and a discrete up-down symmetry if

= 0. It also comprises various special cases like the Ising, Heisenberg, and XY
models. Second, it is the Hamiltonian one obtains when writing a simple lattice
gas model of a fluid consisting of interacting hard core bosons in the pseudo-spin
formulation [1,2]. As such, it has been used to examine both superfluidity [2—4]
and superconductivity [5-8], the latter in the framework of theories that assume the
existence of preformed, real-space pairs in high-T, superconductors. Apart from the
obvious interpretation of the spin model as a magnetic system in a layered or film
geometry, one could then also make a connection with superconductors that consist of
weakly coupled layers, or superfluid films of *He. This model is much too simplified,
however, to give more than a qualitative picture of such systems.

The method we use to construct the phase diagram of the spin system is the cluster
variation method using two-spin clusters. This method can be viewed as an extension
of the mean-field approximation that also takes into account the correlations between
neighbouring spins. It is the quantum version of Kikuchi’s variational method for
classical spins [9-11], and it is essentially 2 mean-field-like method; e.g. it reproduces
the mean-field values of the critical exponents. For getting a global picture of the
phase diagram it 15 a considerable improvement over the mean-field approximation,
which is one of the few general methods applied to the Hamiltonian (1.1) so far.
The cluster variation method has turned out to give quite good results for the phase
diagrams of fully isotropic two- and three-dimensional quantum spin models [12, 13],
despite some unphysical behaviour at low temperature.

In section 2 we will give & description of the cluster variation method, and then,
in sections 3 and 4, apply it to the two geometries mentioned above. The results are
discussed in section 5.

2. General theory

In this section we briefly outline the cluster variation method that is described in
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more detail in [13]. The starting point of this method is the variational principle for
the free energy JF as a functional of the density matrix p of a system

Flp] = Tr(pH) + kgT Tr(pln p} . (2.1

The density matrix must satisfy Trp = 1, and for the true density matrix p, that
minimizes F one finds for the free energy

F=m}n.7-'[p] =Flpl =E-TS. (2.2)

An approximation can be made by expanding F in cumulants, and only considering

the reduced density matrices pc ™ for a limited set of smail clusters C. The reduced
density matrix for a cluster £ containing n spins is

(n) _
Pe” = sp;ﬁl;z P (2.3)

where all spins not in C are traced out. We will limit ourselves to clusters consisting
of single spins and nearest-neighbour pairs.

For 2 Hamiltonian like (1.1) that only contains on-site terms hm and nearest-
neighbour interactions h(J), one can, in this approximation, express F in terms of
pi" and p(z) as follows:

F= ETI.( (1)h(1)) + ZTr(p'(E)h@)

i=1 {ij}

- T{ZS(” + Z( 5@ - g5 . SJ(-”) } 24)

(5}

where the so-called cluster entropies S§1) and Sf?) are defined as

SV = —kgTr(p{ 1n p{") 2.5)
S = kg Tr(p{ In o). (26)

These quantities are the most convenient from a calculational point of view, since
they involve only a single reduced density matrix. All equivalent clusters have the
same cluster entropy, and the number of non-equivalent clusters is determined by the
geometry of the lattice and the phase that one wants to describe. In order to have the
possibility to describe an antiferromagnetic phase we must at least distinguish between
S(” and SH,), where ¢ and b are the two sublattices of the bipartite lattice. In a
more complicated geometry there will be more types of one-spin clusters, and also
several different types of nearest-neighbour pairs, each with its own cluster entropy
SE?). This will be the case when we consider the anisotropic and layered geometries
in sections 3 and 4,
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What remains to be done is to find a suitable parametrization for the reduced
density matrices. In dealing with a spin-i system one can always express these
matrices in terms of Pauli spin matrices:

p?’"—*%(HZc:-’c?) (a=2,v,2)
of

@7
A= DT+ g Teforef)  (wp=sn).
o a,

The functional ¥ is now a function of the parameters <f and c:: These parameters

are just the averages of the spin operators, ¢ = Tr(p; 1 of) = {of), and likewise

""3 = {c"'oﬂ }. From the symmetry of the Ham:ltoman and of the phases under
consideration’ one can deduce two properties of these parameters. First, not all of
them are independent (c.g. one can take ¢f = c! and ¢f7 = cf} etc. because of
the rotation symmetry around the z-axis in spin space of (1.1)). Second, some of
the parameters are characteristic of the ordered phases of the system, ie. they are
only non-zero when a symmetry in the Hamiltonian is spontaneously broken. The
most important of these is the order parameter of the ordered phase. We will refer
to these parameters characteristic of an ordered phase as ‘order’ parameters. The
parameters can be classified accordingly:

(1) n the disordered, high temperature phase only ¢fF and ¢} and, provided that
h # 0, the magnetization m; = 1(c}, + ¢,) are non-zero. Thcre is no spontaneous
breaking of any of the symmetnes of the Hamiltonian.

(i) For negative values of J, the system can order antiferromagnetically in the z-
direction. The order parameter of this antiferromagnetic Ising phase is the stapgered
magnetization m; = L(cz, — cy)-

(tif) If the x~y rotation symmetry is spontaneously broken, the system has a non-
zero magnetization in the x—y plane. The order parametcr for this z—y ordered
phase is cf, while the other ‘order’ parameters are cff, cff, and c’”

(iv) In the case that h = 0 there is a phase where the spins order spontaneously in
the z-direction. The order parameter for this ferromagnetically ordered Ising phase
is m;. In the following we will generally assume that » # 0, and occasionally make
a remark concerning the case h = 0.

We can express the reduced density matrices in these parameters as follows (the
bases {|4)},|-}} and {| + +},|+ =),| — +},] ~ —}} have been used):

W1 T+ (11—
P2 \(14i)ef 1-¢F
o =
1+cf+eci+ce™ (1—i)(F+c**) (1—d)(cf + ™) —2ic™V
3| U + ) L+ef —cf —c* 2c°° (1 = ) (cF — ™%)
(1 + D) (eF + ) 2e%° 1-ci+ef—c* (1—i)(cf — ™)

2icey (L4 i)(ef =) (14D)(f —e®) 1-cf ~cf +c
28)
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where we have, for clarity, omitted the label ij for the parameters c"“a in the ex-

pr&ssmn for pff} While it is easy to calculate the energy part in (2. 4) with these
expressions, for the entropy part we need to evaluate traces like

Tr(plnp) = E)ukln Ak 2.9)
k

where ), are the eigenvalues of the matrix p. It was shown in [13] that, if one is only
interested in locating the phase boundaries, it suffices to calculate the eigenvalues
perturbatively up to second-order in the x—y ‘order’ parameters cf, cf?, and ¢ff.
For a continuous transition one can then find the boundaries between the ordered
phases and the disordered high temperature phase, since these parameters are small
near the phase boundaries. The first order term AL turns out to be zero, and one
finds for the eigenvalues

M= 2+ 4+ 0(c™Y) (2.10)
and hence for the trace (2.9)

Tr(pln p) = Z.\k In A, = Z(’\D + 22)In A% + O(c™Y). (2.11)

The eigenvalues p one finds in this way for pm are

“?1 = %(1 + ¢f) ﬂ?z = %(1 —¢f)

) 2.12)
cF ec?

g = —t_ 2 = —-=t .
Hi 20;? Hiz ch

To zeroth order the eigenvalues ),; of p{}’ are (again dropping the label i)
A =501+ ¢f +6f + )

Ag _ %{1 + [(C: 2)2 +4c=:=:2]1/2 zz}

(2.13)
M= - [ - ) 4 4c=%) P - 2}
A= ;1!-(1—cf—c;+c").
The second-order terms are
1 P, P
2 km kn
M= S {Az =X, TR A%} @14

withm=2,n=3fork=1,4and m=1,n =4 for k = 2, 3, and where £ is
defined by

c? —_— cz; 4c332 1/2
=31 —_— -
(=4 [(1 t oo c;.)z) 1] . (2.15)
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The P,,, are given by
Py =Py = [cf +c** +&(cF + C”)]2
ko 2T 2
Py= Py =[cf + ™ —§(c] +c )]
R (2.16)
Py = Py = [cf — ™ +£(cf — 7))
2
By =P, = [c'; - —£(c'f—c“)l .
On substituting all this into expression (2.4) for F one finds for the free energy

functional per spin @

__7F &
.I):W ({’Zj;zK,Jc,J +K‘“J i -{-ZHC)

[E Z(“:k + 1 F:)In i“:k

i=l k=l

+ Z Z()‘s, k4 AL A,

{i5} k=1

2
-3 S (#2242 ,) 10 u;?,,] @.17)
{i5) k=1
where
Ji; I, h
L= i = Tzdj =
Ky=ph K=k H=gn (2.18)

Alfter also expanding this expression to second-order in the other ‘order” parameters
(like 772;), it can be separated into two terms. The first one, $,, only contains the
parameters associated with the disordered phase, ¢ff¥, c}}, and m,, while the other
one, ®,, is bilinear in the various ‘order’ parameters. (If one wants to consider the
case h = 0, one should expand ¢ to second-order in m; too, and include m; in the
set of ‘order’ parameters.) @ can now be writtenf

=0y + Pyt =dy+c Mct--- (2.19)
where ¢ is a vector containing all ‘order’ parameters, and M is the symmetric matrix

2
M, = Lo
9c¢;8c¢; o

(2.20)

The matrix M itself only depends on the parameters of the disordered phase, i,
cf?, and m,. Since ®, does not contain terms that are a product of ‘order’ param-
eters for different phases, the matrix M is block diagonal. It contains a block MAI

t Mote that the definition of ¢ is different from that in [13].
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corresponding to the ‘order’ parameters of the antiferromagnetic Ising phase, a block
MXY for those of the z—y ordered phase, and in the case A = 0 a block MF! for the
ferromagnetic Ising phase.

Now the minimization of @ in the disordered phase boils down to minimizing @,
since the minimization with respect to ¢ gives the equation Mc = 0, which in this
phase has the trivial solution e = 0, i.e. all ‘order’ parameters are zero. In an ordered
phase, on the other hand, there is also a solution for the minimization equations for
& with some elements of ¢ non-zero. The two solutions bifurcate for det M = 0, so
this is the equation giving the phase boundary. Since M is block diagonal, the three
different phase boundaries follow from

det MP =0 (2.21)

with P = AI, XY, FI for the antiferromagnetic Ising phase, the z—y ordered phase,
and the ferromagnetic Ising phase, respectively. The procedure for finding the phase
boundaries is then first to solve the minimization equations for @, for the disordered
phase only, substitute the result into M, and then to solve (2.21). In some cases, e.g.
when the field k is zero, this can be done analytically, but if necessary the whole
minimization can be done numericaily.

3. The spatially anisotropic geometry

To apply the method described in the previous section to a specific geometry, one only
needs to identify the different types of clusters, and count how often they occur in the
lattice. As a first example we will consider a cubic lattice with a spatially anisotropic
interaction. The lattice consists of a collection of parallel quadratic planes, and the
coupling between spins that lie in the same plane is different from the coupling
between spins in adjacent planes. We will take the coupling within the planes to be
larger than that between planes, so one has a stack of (more or less) weakly coupled
layers. By varying the ratio of the inter-layer and intra-layer couplings from zero to
one, the system changes from a collection of uncoupled, two-dimensional quadratic
lattices to an isotropic three-dimensional cubic lattice.

3.1. The calculation of MP

For this geometry the Hamiltonian (1.1) reduces to

H= Z —Jy(egfof + o-f‘cr}’) - J,oiof
{0l

-4

+ E -—JJ_(afaf-{-a?a;-")—Jzio’fo'j—Zhdf. 3.1
(#)L =1

The summation 3°,.,; extends over all nearest-neighbour pairs of spins inside the
layers, while the sum >~ , tuns over nearest-neighbour pairs that lie in adjacent
layers. The couplings Jy and J,, and J, and J,, are the intra-layer and inter-layer
couplings, respectively.

Apart from the distinction between the sublattices a and b, all sites of the lattice
are equivalent. There are, therefore, two one-spin reduced density matrices, pf,,n and
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pil), and two corresponding cluster entropies, 58 and S,El). There are also two
different types of two-spin clusters, since in this geometry a cluster of two spins in
the same layer is not equivalent to one of two spins in adjacent layers. Thus one has

two two-spin reduced density matrices, pflz) and p'?), and two cluster entropies, Sﬁ )
and SV, Consequently, one finds for the energy terms in (2.4)

N
Tr(oH) = 3 Tr(oPa®) + 3 Te(APrP) + 3 Tr(Pa)
i=1 Gl (G37L
= = N (4dycf® + 2, o + 20,57 + J, , 05 + mh) (3.2)

since out of the 6 neighbours of a particular spin 4 lie in the same layer, and 2 lie in
adjacent layers. For the entropy one similarly finds

N
kg Tr(pln p) = (5 S s - s 3 S_(Lz))
i=1 (i) {ij}L

= kBN[ - — Z Tr(pmln p(l)) + 2Tr(pl<|2) In pff))

g=a,b
+ TP )| (33)

The disordered phase is described by five parameters: m, ¢j*, i, 17, and c7’.
The values of these parameters can be found by minimizing ®,, which in this case is
given by

4)0:'-"(41{“6" +2Kz"c" +2KJ_C_L +I(ZJ_C +mH)
~5PM 4 2p(? + P() (3.4)

The contributions from the three terms in (3.3) are obtained by setting the ‘order’
parameters equal to zero in the eigenvalues of the density matrices. This gives

'P(1)=12~(ln(1— 2)+mln1+ ) —In2
—_m

(3.5)
‘”—ZA (el (¢ =[L,L).

'1313 eigenvalucs Ay in the disordered phase are simply the expressions (2.13) with
c; = CJ- - m.

Performing the minimization with respect to cz®, we find that the equations for
¢ =|| and { =J. decouple, and that they are the same apart from an overall factor,

&8 Al
ac“@oocch 5 N’P( ) =2K, - Xg_ =0
(3.6)
) 8_(13 (2) — 1 J\El)‘g
ac‘zz 00(ch 6 zz'P .ch ;’in )\0 )\0 =0.
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Equations (3.6) can be solved, and the result is the same as that for an infinite
isotropic lattice [13]

2/ a2 172
oc+ 0, -2 (08 +m(62 - 0c6;))

czz -_—
< o, — 0, @7
= %(1 —c¢*)tanh(2K,)
where
O’( = eéK“‘ Gc = COSh2(2Kc) . (3.8)

The result of minimizing in m is

8 8
8 o — g8 (ep) g op® 4 p®
-y = H-;-am( 5P® + 27( + P(?)
14m 1+2m+c|| 14+2m+ c4®
= _HgH_& Lpp—=" "L —p,
H-zlhhim T2mtey T2 T-2mt oy 0
(3.9)

This equation should be solved, together with (3.7), to give m as a function of H, or,
if m is considered as an externally imposed parameter, it gives the field H required
to produce that value of m.

The second-order term ¥, is

®, = c'Me (3.10)

where the vector ¢' = (m, c”, cf“, c%*) contains the ‘order” parameters. The matrix

M is a block diagonal matrix consisting of a 1 by 1 block MA!, giving the coefficient
of the term quadratic in 771, and a 3 by 3 block MXY coupling the other three ‘order’
parameters, (¢*, cf*, ci*

5 1 "];2

AO
MAT = +—In n =2 3.11
1-m? d ia c%® }\3_3 (3.11)
and
5 1+m
ME = = ln 75 o a(el, + ) + 2(eky + 8

MY = M = a(d, - &,
MY = MEY = 2048, ~ £3) (3.12)
MEY = a(dl, + )

M3 = M5 =0

ML = 2(65 + &5,
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where

In(A2, /22
= w €=l1- (3.13)

If one wants to consider the case h = 0, m must be set equal to zero in ®,, and
included in the vector e. M will then also contain a 1 by 1 block M giving the
coefficient of m?, which is equal to

MFl = _5 4 ¥ T < 3 1)

5 T T T 1 T T T T T ) T T T T
; L b L I
4 - XY ey -
. S -
NG Mteells T S B
2 NN Tt e e T .S
- - - 4 r'
s 3 --____-_ —-._____, - f 'J mamd
. AN T T e e =TT e F
v e TS e ale i ¥
| Y R U i ; _|
Ky I e i1
' \ i i -
2 I fro —
1) [] I
Vo Frog
VoL o
3 \ i P !
- Al 1 (S D I t ] -1
L] (] 3 ’
by il
- ¥ [ [} 1 -
Vo P
" | 2 N L I £ i 1 L : R .| | 1
& 2 0 2 A
Ky

Figure 1. The phase diagram for the spatially anisotropic geometry. The phase boundaries
have been drawn for =<0 (----«. Wi1/4 (---) 1/2 (— =), 3/4 (~— . —), and
1 (—). The magnetic field H is zero.

3.2. Results

The phase diagram we obtain for this geometry is shown in figure 1 for different
values of the spatial anisotropy n, and the magnetic field H equal to zero. We
will always take the anisotropy in spin space equal for the intra-layer and inter-layer
couplings, so that for the spatial anisotropy we have n = K, /Ky = K, ) /K.
The two-dimensional case is recovered for n = 0, and the three-dimensional one
for n = 1. The other three values, n = 1/4,1/2,3/4, interpolate between these
two. The structure of the phase diagrams is roughly as follows: at high temperatures
(around K = K, = 0) the system is in the disordered phase (D). The ordered
phases one finds at lower temperature are the ferromagnetic Ising phase (F1) for
K., > K > 0, the antiferromagnetic Ising phase (al) for —K, > K > 0,
and the z—y ordered phase (XY) for K > [K,|. The boundaries between these
three phases and the disordered phase follow from the equations det M¥ = 0. For
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H = 0 the Ising phases are separated from the XY phase by the lines Ky = K

As 7 is increased from zero to one, the disordered region (D) shrinks, the phase
boundaries moving towards lower values of K (higher temperatures). The general
shape of the disordered region changes little; for the Ising, XY, antiferromagnetic
and ferromagnetic Heisenberg models one has K! < KXY <« KM < K™ for most
values of . Two qualitative changes take place. First, the critical coupling of the
ferromagnetic Heisenberg model, which is infinite in two dimensions, becomes finite
as soon as the inter-layer coupling is turned on. This is consistent with the fact that the
lower critical dimension of this model is 2. Second, the antiferromagnetic Heisenberg
model does not exhibit a phase transition for n < 1/4. This is related to the fact that
the cluster variation method, and similar approximations, predict a spurious phase
transition at low temperatures [12,13,14]. As the temperature is lowered, both the A1
and XY order disappear, and the system remains disordered down to T = 0, For low
dimensions, and in this case for small 7, this artifact of the approximation interferes
with the phase transition at higher temperature. So, unfortunately, no conclusions
can be drawn about the behaviour of the antiferromagnetic Heisenberg model near
two dimensions, which is of great interest in connection with theories of high-T
supercanductors. For n > 1/2, this unphysical transition takes place at such a low
temperatuare that it is clearly separated from the physical ones, and the phase diagram
is barely influenced by it. In fact, for the three-dimensional isotropic case ( = 1), it
turns out that the accuracy is quite good when compared to high temperature series
expansions.

R I

5 e 1

n

Figure 2. The critical temperature for the spatially anisotropic geometry, as a function
of 5. The values of kg7:/[J| have been plotied for some special cases of the XX Z
Hamiltonian, viz. Ising (O), XY (%), antiferromagnetic Heisenberg (A), and ferromagnetic
Heisenberg (O) interactions. The lines have only been drawn to guide the eye,

In order to show the change of T, from its two-dimensional value to that for three



10006 D J Bukman and J M J van Leeuwen

dimensions, figure 2 shows a plot of kg7, /l.J| = 1/| K| versus the spatial anisotropy
1. The values given are for some special cases of the Hamiltonian (3.1), namely the
Ising, XY, antiferromagnetic and ferromagnetic Heisenberg models.

4. The slab geometry

Another geometry that shows a cross-over from two to three dimensions is that of
a slab consisting of a finite number, n, of simple quadratic layers. We will take the
coupling constants equal in ali directions, and by letting n run from 1 to co the system
changes from a two-dimensional simple quadratic lattice to a three-dimensional cubic
lattice. The Hamiltonian is basically given by (1. 1), with J;; = J, J,, =J,a
homogeneous magnetic field &, and the sum running over n iayers contam:.ng N / n
spins each. The top and bottom layers have free boundary conditions. A similar
calculation for the Ising model can be found in [15]).

4.1, The calculation of M¥

Since the slab has only a finite thickness, there is no translation symmetry in the
direction perpendicular to its surface. Therefore all n layers (which we will indicate
by an index r running from 1 to n) are different, except for a reflection symmetry in
the middie plane of the slab, so that layers » and n + 1 —r are equivalent. Quantities
that refer to one layer only, like the one-spin cluster entropies and the cluster entropy
for two spins in the same layer, will be given an index r indicating the layer they
refer to. Quantities that refer to two adjacent layers, like the cluster entropy for two
spins in different layers, will also be given an index r, now indicating that they refer
to layers r and r < 1. For these quantities the reflection symmetry means that those
labelled  and n — r are equivalent. The two sublattices necessary for the description
of an antiferromagnetically ordered state are defined on the cubic lattice, so that a
site on sublattice a in layer r is adjacent to sites on sublattice b in layers r—1, r+1,
and r.

For each layer r we consequently have two one-spin cluster entropxes S8 and

S,(_l,,), and one cluster entropy for two spins within the layer, S,(_ . There are two

cluster entropies for spins in different layers, S,(."fa where the spin in layer = is on

the a sublattice and the one in layer r + 1 on the b sublattice, and S,(."j_)b, where this
is the other way round.
For the free energy functional ¢ this leads to the expression

= K 1
nd=3%" [-—4(ch“’ + T’cﬁ,’l) - Hm 4+ — 5 ( (S 4 sGh - 235,?,))]
=1

n—1
+ Z Z [ (I(cr.l.q + "—_'cr.i.q) 2k Sf(:j.)q]

r=1g=a,b

T 2 (s® 4 5P + 5@ + sW). (4.1)

The last term is a correction due to the fact that the top and bottom layers have only
one neighbouring layer. In the disordered phase the non-zero parameters are m,,
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» and c7y for every layer, and cff and ¢} for every pair of adjacent layers—
c,,J_ = (c&f, +c27,) /2. Hence we find for @,

nd, =3 [ (Kc," + —ic,.") — Hm_-5PM 4 2P£ﬁ’}
r=1

n-1
+ 3 [~ 2kt + Breit) + 2] + 20 490 “2)

where

PN =1 (ln(l—mf.)+m,.ln 1f::’") —In2

4.3)

2
ic)—z'\ crlnXley <¢=l,L).
k=1

In the disordered phase, the eigenvalues ,\r" x> Where both spins in the cluster are
in layer r, are obtained from (2.13) by setting ¢f = ¢} = m,. For two spins in
adjacent layers, r and r + 1, we get A%, . from (2.13) by setting ¢ = m, and
cf = m,,. The presence of the magnetization profile m, prevents us from treating
the disordered phase analytically, so the minimization in the presence of a field H
has to be done numerically. If H is zero, however, and consequently there is no
magnetization, an analytical treatment is possible. This will be done in the following
section.

The second—order term &, is again of the form ®, = c¢TM¢, where now ¢
(m,.,85%,86%%, %, %, " »¢y1,ci1) contains a large number ot‘ ‘order’ parameters. For

the antiferromagnetic Ising phase there is the staggered magnetization m, = (cZ,
c7y)/2 for each layer. In addition, the quantities §2° = (c2¢ Ta = CF J_b)lz are also
ron-zero when the two sublattices a and 6 are d:ﬁ'erent which gives rise to these new
‘order’ parameters. For the z—y ordered phase c contains the magnetization in the
:c—y plane, ¢Z, the intra-layer correlation crf and the two inter-layer correlations
1 and 7. For the case h = 0 the parameters m, must be set equal to zero in
@0, and included in ¢ as the ‘order’ parameters for the ferromagnetic Ising phase.
The structure of the matrices M is given in the appendix.

4.2, The case H = 0

In general the determination of the phase boundaries for the slab geometry must
be done numerically, but if # = 0 one can proceed analytically, as we will first do
for the z—y phase boundary. In this case the description of the disordered phase
simplifies due to the fact that there is no magnetization profile m,.. For H = 0 and
m_ = 0, equation (4.2) becomes

o n-1
n®, =% fl+3 st -2In2 (44

r=1 r=1
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with

Nz i) = —4(K 3} + 3K, i) ~ 5In2 + 2P "
fl(cr.l.’ r.!.)—"'z(Kc +’1K c )-]- (2)

Now minimizing &, with respect to a parameter ¢ of the disordered phase gives

8
Beag " P0 = “"acgg fi=0  (a==,2) )
because there is only one term in (4.4) containing the parameter caé's Moreover,

apart from an overall factor of 2, the dependence of f¢ on c2¢ is the same for any
r and ¢{. So, as in (3.6), we find for all » and (

A
2K - -2 _p® _ o _ 122 o

T s @n
K - p(z) K _lln(_}\g(i—o .
P aere = Ky e T

The expressions P only depend, through (4.3) and (2,13), on 7% and c?Z. The
equations (4.7}, that determine the corrclations ¢{f, can be solved mdependent]y of
r and (. The solutions one finds are again just the same as in the case of an infinite
lattice, namely

_ €% —cosh2K

TE o N
Ge¢=c¢ e?Xs 4 cosh2K (4.8)
TF e TE sinh 2K
¢ =C¢ = TR, + cosh2K ° (4.9)

To find the phase boundary, we calculate the second-order term &, of the free
energy functional,

n

n®, =3 -50 + 200 + Z Q) + oV + o (4.10)
=1
with
QY = 2
(4.11)

4ucs? )
g2 =3V"a2 Al _{
¢ Z R T e b en, ) kvl - e5,)? (=)

and, using equation (4.7),
. ¥
T 2(eFF — ¢=7)
= ftE
T 2(cF* + ¢=2)

(4.12)
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Minimizing $, we find the system of equations 8n$,/8cX = 0, which turns out to
be
byef +acg =0
acy_j+bef +aci,, =0 (1<r<n) (4.13)
acy_y +bcp =0
with
K,-K K, +K
¥t — 3T o3 + i
K.,-K ,_K,+K

— 2 —

b=10 o422~ 10 (4.14)
_ K, -K K +K _

bl—gcsz_cmz+czz+czs

The system (4.13) admits solutions of the form ¢ = ay”. From the equation for
1< r<nweiind

a(@ " +y™H )+ by =0 (4.15)
or '
—b+ b2 —4g2
Yy = o (4.16)
a
and
¢ = oyl + Byl . (4.17)

Substituting (4.17) into the equations for the boundary layers then gives

(byy, +ayi)a+ (by_ +arf)B8=0

(4.18)
(0¥} +ayi Vo + (by} +ay}i)g=0.
The trivial solution o = @ = 0 gives the disordered phase, where the magnetization
is zero; at the point where the determinant of the coefficients vanishes, the solution
bifurcates, and this signals the transition into the x-y ordered phase.

It follows from (4.15) that y, y_ = 1, and for b2 > 442, y, are real. For b® <
4a® they are complex conjugates, so y, = e~'%, y_ = i, For high temperatures
one finds that 4% > 4a? giving real y,. Lowering T, one comes to a point where
b? = 4a?, and y, = y_ = 1. This happens at T,(oo), the critical temperature for the
infinite cubic lattice. Due to translation invariance, the spontaneous magnetization of
this system is homogeneous. The equation b = —2e is equivalent to

2K
*r 4+ cosh2K
iR, Ik 0 (4-19)

6(K, — K)2
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which is indeed the equation for the phase boundary of a system with coordination
number z = 6 as found previously [13]. At T.(oco) a layer of finite width is still
disordered, since the bifurcation of the solution of (4.18) has not yet taken place.
Below T.(o0), we have y, =e ¥ and y_ = €%, 50 ¢f = ae”i"¥ 4 G4, with
tan ¢ = 1/4a%/b% — 1. The determinant of (4.18) then gives
(by + ae-** ) = emHn-lid(h 4 gelt)?. (4.20)

The solution with ¢ = 0 corresponds to the bulk transition temperature T,(co), and
does not indicate a phase transition in the finite slab. This transition corresponds to
the first non-zero value of ¢ satisfying (4.20), which is a solution of

by + ae”* = —e~(*~1i9(p § gel?), @21

Hence we find that the solution of (4.21) corresponding to the smallest non-zero
value for ¢ gives the critical temperature 7,(n) of an n-layer slab. In the limit of
large n, the value of ¢ at T,(n) approaches its value for the infinite lattice, ¢ = 0
at T, (co). By expanding (4.21) for small ¢ and large n we find that ¢ poes to zero
as ¢ = w/(n + q), with g given by ¢ = —(3a + b,)}/(a + b,) calculated at T,(oo0).
It can be shown that g > 0 for all K and K.

In addition to the critical temperature, we also find the shape of the order param-
eter profile cT at the onset of the ordered phase. The normalization is determined
by the higher-order terms of ®, but since ar T,(n) the amplitude is zero anyway, the
shape of the profile is the only quantity of interest. We first observe that, in order to
have a real-valued magnetization, we must have 8 = o*, 50

¢ = |al(eT#+40) 4 lr4+4)) = 9 cos(re + dy) @2)
The angle %y can easily be found from the symmetry requirement that ¢? = Crdlmrs
which gives ¢, =8 —7/2 = —(n+1)¢/2, and

ef = 2|adsin(ro + ). (4.23)

Exactly the same treatment can be apphed to the ferromagnenc and antiferro-
magnetic Ising phases; the only difference lies in the expressions for a, b, and b,. For
the ferromagnetic Ising phase they are

o=t K
-1 + e*= cTT
10 K
b= T+ o2 +2 -c;—lﬁ (4.24)
9% K
bl 1 + c** + .c.'r.'_m -
and for the antiferromagnetic Ising phase
_k 1
- ::;5 14
2
b_lo—-~+1+ —— 10 (4.25)
1
bl =9— + -

cE.‘.b' 1 + czz

Using equation (4.21) combined with (4.15), (4.24) and (4.25) we can construct the
phase diagram for & = 0.
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Figare 3. The phase diagram for the slab geometry. Phase boundaries are given for
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Figure 4. The critical temperature for the slab geometry for various values of n. The
values of kgTe/|J] have been plotted for some special cases of the X X Z Hamilto-
nian, viz. Ising (0), XY (x), antiferromagnetic Heisenberg (A), and ferromagnetic
Heisenberg (O) interactions. The lines are guides for the eye.

4.3, Results

The phase diagram we find for the slab geometry is shown in figure 3 for n =
1,2,3,4, and oo and H = 0. For the two- and three-dimensional cases n = 1
and n = co they are of course equal 10 the results for the infinite lattices with
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Figure 5. The order parameter profile c* near T in a 30-layer XY slab (K = 0). For
n = 30, the critical coupling is K. = 0.2 243, giving ¢ = 0.09873 and § = 0.04 045,
The solid line shows sin(r¢+ 8), scaled to match the result of a numerical minimization
slightly below T {at K = 0.2244), which is given by the dotted curve.

coordination number z = 4 and 6, respectively, while the double layer corresponds
to the case z = 5. The basic features of the phase diagram are the same as in
section 3, with in this case the unphysical gap around K, = - K, disappearing for
n > 2, Figure 4 again displays the behaviour of T, when going Prom two to three
dimensions.

For this geometry we also calculated the order parameter profile in the layer. In
particular for the z—y ordered phase this is of interest, since the order parameter ¢
(indicating off-diagonal long-range order) corresponds, in the pseudo-spin formulation
of the quantum lattice gas [1], to the superfluid condensate wavefunction. It was
shown in the previous section that the shape of the order parameter profile at T, is
given by ¢ « sin{r¢ + 6). In figure 5 we show the profile for the XY model in
a slab of n = 30 layers. The critical coupling for this thickness is K, = 0.2243,
which corresponds to ¢ = 0.09873, and 6 = 0.04045. As a comparison we have
also drawn the result of numerically minimizing the full free energy functional & at a
coupling slightly below T, K = 0.2 244. The plots have been scaled so as to coincide
at their maxima. Obviously the approximations made in section 4.2 hold in a small
temperature range below T,. For temperatures further below T, the magnetization
cZ starts to saturate in the interior of the slab, and since this behaviour is governed
by the higher-order terms in & the order parameter profile is no longer sinusoidal.

Some conclusions we can draw from the behaviour of ¢ near T, are, first, that
all order parameters become non-zero simultaneously at the same temperature, so
there is no separate surface transition. Second, the order parameter drops almost
to zero at the slab boundary; in fact the profile goes through zero at ry = (n +
1)/2 —=/2¢, which is immediately outside the slab. In the limit n — co we find
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Figure 6. The order parameter profile ¢ in a 30-layer Xy slab for K = 0.225 (-+-- .- ,
K =023 (---), and K = 0.25 (—). The critical coupling for » = 30 is
K. = 0.2243. Also plotied are the values of ¢¥ in a three-dimensional lattice at the
same coupling strengths (open symbols).

that ry, = (1 — ¢)/2 < 1/2. This supports a proposition that was made recently [16],
that the use of Dirichlet boundary conditions in finite-size scaling theory would be
fairly realistic.

Further away from 7,, we observe that there are two effects that suppress the
value of the order parameter in a layer with respect to its value in a three-dimensional
lattice. For any temperature, its value will be lower in the outer layers, because of
the proximity of the free boundary layer. Second, for temperatures just below T,
the order parameter will be smaller than its three-dimensional value over the whole
width of the slab, because T, for the three-dimensional system is higher. For low
enough temperatures, the magnetization takes on its three-dimensional value in the
inner layers of the slab. The order parameter profile for a 30-layer slab is plotted in
figure 6 for various values of K for the XY model (K, = 0).

5. Discussion

To examine the merits of the cluster variation method applied to these spin models,
we will compare its results with those of other approaches. We first examine the Ising
transition, since the Ising model is both the simplest and the most intensively studied
model described by a Hamiltonian of the form (1.1). The Ising model is known to
have ordered phases with a non-zero magnetization in two and three dimensions, and
in both dimensions the cluster variation estimate of T, is considerably better than
that of the mean-field approximation. Hence one would expect its result to be an
improvement for the slab geometry, too. This is indeed the case, as is shown in
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Table 1. The critical temperature for an Ising model (K = 0) slab consisting of n layers.
Listed are the mean-field estimate kg Tt/ J; = 6—2/n, the result of the two-spin cluster
variation method, and the series expansion result of Capehart and Fisher [17].

k BT'B/ Jz
n  Meanfield o<vMm Scrics
1 4 289 227
2 5 392 323
3 533 432 365
4 55 452 388
5 5.6 464 403
6 567 471 414
7 571 476 4.21
o 6 493 451

table 1, where we compare the results of these two approximations with those of
series expansion techniques [17] for the pure Ising case K = 0. Similarly, for the
spatially anisotropic geometry one would expect the cluster variation result to be
an improvement over the mean-field estimate kpT./Jy, = 4 + 2n. Thus the Ising
transition seems to confirm the pattern one usually finds for classical models: the
two-spin cluster variation method overestimates T, but much less than the mean-field
approximation. In turn, the cluster variation result can be expected to improve when
one uses larger clusters. Also, as long as the Hamiltonian is Ising-like (X, > K 2 0),
there is no unphysical transition back to the disordered state at low temperature.

The situation for the z—y transition is more complicated. For the slab geometry
one expects a transition to a phase that does not have a magnetization, since it
is known that such a phase cannot exist at T ¥ 0 in a finite slab [18,19]. This
phase might have topological order 4 la Kosterlitz—Thouless {20]. For thick slabs the
transition should cross over to a three-dimensional z—y transition. For the anisotropic
geometry, on the other hand, a three-dimensional »—y tramsition is expected, only
crossing over to a two-dimensional transition in the limit of uncoupled layers. The
cluster variation method is not capable of producing a topological phase transition
in these situations, and yields, as a refined mean-field method, transitions to an x-y
phase with a non-zero magnetization. Only the location of the critical temperature can
be meaningfully extracted from the cluster variation method. As it agrees reasonably
for the pure XY model (K, = 0), we may expect that in the general case K, 3 0 it
also gives a good description of the phase boundary. The fact that the behaviour of
T, as a function of n is qualitatively similar to that for the Ising model is confirmed
by renormalization group studies [21].

The situation near the Heisenberg model (K, = +K) is particularly delicate.
In the slab geometry, being basically two-dimensional, the tramsition point should
diverge to K, = oo for all slabs of a finite thickness. In the anisotropic geometry
K stays finite for all anisotropies except for the case of uncoupled layers. To a
certain extent the cluster variation method shows this picture for the ferromagnetic
Heisenberg model. It gives a transition temperature T = 0 for the two-dimensional
case, but finite transition temperatures in all other cases. It gives an increase of K,
for finite layers near the Heisenberg model, but fails to produce the divergence of
K, (or T, =0).

For the antiferromagnetic Heisenberg model the picture is similar but blurred by
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Table 2. The results of the cluster variation method compared with those of the mean field
appraximation and of series expansion techniques [22]. Shown are the critical couplings
for the Ising, XY, antiferromagnetic Heisenberg and fertomagnetic Heisenberg models,
on a simple quadratic (z = 4) and a simple cubic (z = 6) lattice.

Simple quadratic Simple Cubic
Mean-field cvM Series Mean-field CVM Series
I 0.25 0.347 0.441 0.167 0.203 0.222
XY 025 0.451 0.635 0.167 0.224 0.248
AH 0.25 — —_ 0.167 0.246 0.260
FH 0.25 o0 o 0.167 0.275 0.298

the interference of the spurious disordered phase at T' = 0. The fact that for layer
thicknesses below n = 3 the transition temperature drops to zero cannot be seen as a
virtue of the cluster variation method, since it gives a similar behaviour for sufficiently
anisotropic geometries. Incorporation of long wavelength fluctuations is an essential
ingredient to improve the phase diagram at points where higher symmetries of the
model drive the phase transition to T = 0.

A further comparison with series expansion results [22] is shown in table 2 for the
two- and three-dimensional infinite lattice. In all cases the cluster variation method
gives a considerable improvement over the mean-field result. Also, whereas the mean-
field approximation gives the same value of KX for all models listed in table 2, the
cluster variation method has K} < K¥¥ < KM < K, in accordance with the
series results. We may conclude that while the cluster variation method does not
always give a pood description of the phase transition, its estimate for the critical
temperature is in general quite good. Especially in cases where it is not feasible to
examine the whole phase diagram by more sophisticated methods, it is a useful tool.
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Appendix

In this appendix we give the structure of the matrices M” for the slab geametry
described in section 4. Due to the reflection symmetry there are w different layers
in an n-layer slab, with w = n/2 for even n, and w = (n 4 1)/2 for odd n.
Quantities that pertain only to one layer will, therefore, give rise to w independent
‘order’ parameters, while the exact number of ‘order’ parameters for quantities that
concern two layers depends on n being odd or even, and also on the effect of
the reflection symmetry on these ‘order’ parameters. The matrices MF are always
symmetric, M{"; = M. The elements that are not given below, and that cannot be
obtained from the elements given below by using this symmetry are all zero. As was
already pointed out in section 4, for n = 1 and 2 the results are equivalent to those
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for an infinite lattice with coordination number z = 4 and 5 respectively. Hence we

will assume here that n is larger than 3.

For the antiferromagnetic Ising phase the situation is as follows. The staggered
magnetization, 7, for each layer, gives rise to w different ‘order’ parameters. The
quantities 67 and &;* give an additional w ~ 1 parameters. There is no §3*, since
for even n the layers w and w -1 are equivalent because of the reflection symmetry,

and hence 63 = 0, and for odd n, §2% =

w 1+

So in total the vector ¢ contains

3w -2 parameters connected with the antiferromagnetic Ising phase; these elements

of ¢ will be ordered as follows:

Cy._g = M, (r=1,...,w)
Cg g = 67F (r=1,...,w—-1) (Al
ey, = 2% (r=1,...,w=-1).
In this notation the elements of MA! are, for » < wn
-8B 1||2 ( A ) ( Az
MA < + 1 il _ =1
1,1 1 mg + 1" } )\103 + + 61 + 4(-91 wlz 71
=10 I] AZ 1 Al
Al + 4 2r ot — =
Mar—2,3r- 1 — + Cs“ A,.ﬂ:; (Q'r + wg ﬁr) + 409,- (1 w,": ) Tr
2
¥ r—1 1 (i Arr 1
M3r—2 sr—1 & —_L&ﬁj- 2,‘“’;-]- Tr
M3A1{~2,3r = % ( "g )
Al _ : 1 A2
Mssees =4 (ot = 5565 ) + 7 (1~ 25) w (42)
Al csiQ sin
M3r-—1,3r—1_ = ﬁ++_'(1_ r2 )‘Yr
!" w?‘
MAI - __cr..L ﬁ—
3r-1,3r w, L
Mﬁ-z,aﬁl = Mﬁ-—z ar-1
Mé‘rl',.'ir = (0:+ + ﬁ )
MAI - ___L a-—- + _Lﬁ_
3r,3r41 2 r w T *
r
From the last layer there is, for even n, a contribution
-10 A9
M = __IJ_ n —wtd
wmadu=i 1- mz = ci:i:t Aw[[:! T 2cw.l. A?u.i.:!
1 Al
1 w"‘ + ] — =1
3 ( v ¥ gz w—l Bo- ) * AWy ( wi_y ) Tt (A3a)
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and for odd n

~5 1 0
Al =2 4 = jp_xhz
Mew-rsw-2 =7z + Cf,fﬁ RN

— 1 A2
+%(w-1+ “"ﬂ* )+ (1—-—~;-‘"—‘)vw-1.-

W 4""Ju.r—l we1

The following definitions have been used

1 1
+ _
VUV

10017

(A3b)

(Ad)

In the »—y ordered phase there are w parameters cZ and egf and w—1 different

parameters c;i and c;7. Finally, if n is even, there is one additional parameter
cpl = c;f because of the reflection symmetry. So in total ¢ contains 4w — 2

parameters for odd n, 4w — 1 for even n, ordered as follows:

Cro3 = Cy {(r=1,...,w)
Cirz = Crff (r=1,...,w)
Cyr_y = €7 (r=1,...,w~-1)
Cyr =1 (r=1,...,w—1)
Cyppm1 = Corp (for n even).

For the matrix MXY we find, for r < w

MY = —--—ln -1-—4_'—!» +8 (e} +4f)

+ 1 _,, & [€2 (65 + 644) + &iF + €3f)
M 545 = —;i% In 2t e - =48 (ad+ &)
+1 +Ez (67 (857 + 450) + €5 + &5
+ [€2_, (51 + €712 4 51t 4 g5

1+£2_

(AS)

(Aba)

(r#1)
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M4r—3 4gr—2=28 (‘er“ ‘e;lll‘)

Mx‘f_ Ly = —— €2 er.l. +er‘.§. e
4r—3,4r—1 1+££[r(1‘2 ) ]

2¢
Mﬂs,-zr = 3 +,:52 (EH' +£§i' rl ET'L

Mﬁ-s,«u ] + &-g (€77 ~ £55 — &5 + £55)
Mir—2 4r—2 = 8 (e"‘“ E;Ll)

Ad£“h4—1+fzm4f*+e 1)+ 65 + 6y

ME, = ek — ot — et + 03]

1+ &
XY 251- rd r ri
Mﬂ‘l’—l,‘lh‘i‘l 1 + 62 {E + 234 - 813 - 4 ]
ME, = 0 + 52 [€2 (655 + £58) + 24 + 254

M= 1_-1"76_’ [€2 (€15 — 653) + &5 — £55] -

The last few elements are, for even n

10 1 ol . w ol o
M4w—34w—3"‘""'—“—ln ltm +8(£ “-I—E “) +2(-€ L o+ £ :’)
+ ?:;EZ__ [62 _ w l,l. 1J.) + ew—ll +£13u4-1.1.]

Mfg-s,-zw-z =8 (ﬁ;" - Eﬂl)
Mﬁ—s aw-1=2 (ewl - ew'l')
MY nen =8 (584 51

Mfu‘f-l,*!w—l =2 (3‘1”2 + eﬁl)

and for odd n

M 5 1+m P -
2‘13—3,41» 3=~ In T_—"‘- +4 ( 4 s II)
w

w

+ 2 162, (5 4 28730 4 gdd 4 gt

148,
Mﬂ,-a,m—z =4 (3;02“ - 512‘;“)

Mﬁu2‘4w_2 =4 (g‘"’ﬂ + em") .

(A6D)

(ATa)

(ATh)
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We have used the definitions

g = ((Emcin)? NP (el
" 4c* 2¢5F
(AS)
r ]'n(A (k/‘xr( m)
ekﬁ —

™ 4()‘1’( kT Ae'(' m)

Finally, if k == 0, there are w parameters m,. for the ferromagnetic Ising phase,
giving a vector ¢

(€ =“’J-) .

¢, =m, (r=1,...,w) (A9)

and a matrix MM (for r < w):

MR = g4y 5 1 1 1n§JLz
n Theff " 1+efi " 4] M5
8 ' 1 1 }\ 1
MP = 104 - + b ln AR
" Ty 14efi 407 ’\2.1.3 T+eZyy
(A10)
1 A0
+ o In g (r#1)
d4e7%y =113
1 1 A0
M - _ ln rl?2
S ALs
while for » = w and n even we find
8 2 1 1 A0
ME —_10+ + + InZu=il2 (Al1g
e e T ivem T iteig gy TR, 09
and for n odd
4 1. 1 © A0
ME = _5+ In 2=1LZ eA11p
o T+ el * 1+ el + 4ef7 1 AYy_ila ( )
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