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J. Php: condens. Matter 3 (1991) 9995-10020. Printed in the UK 

The phase diagram of t h e m  model for slab and layered 
geometries 

Dirk Jan Bukman and J M J van Leeuwen 
Instituut-loren- Rijbunivemiteit te Leiden, PO Box 9506, U M )  RA M e n ,  
The Netherlands 

Reaived 29th July 1991 

Abslmcl. The phase diagram of the spin-; XXZ model is examined for two different 
geometries, which can be changed from two- to threedimensional. The first of these 
eonsisls of an infinite stack of simple quadratic layers with a variable inter-layer coupling, 
where the ratio of the inter-layer and intra-layer couplings varies between zero and one. 
Second, M consider a slab geometry consisting of n such layem with equal couplings 
in all directions. For both geometries we use the cluster variation method for two-spin 
clusters to construct the phase diagram of the model, and we a m i n e  the changes that 
take place as the sptem changes Gum two- to threedimensional. For the slab geometry 
we also calculate the order parameter prolile near T.. It turns out that Dirichlet boundary 
condition; for the Elated superlluid wavefunction aTe most realistic. 

1. Introdudion 

The behaviour of systems as a function of their spatial dimension is an important 
issue in statistical physics. Indeed, some properties, like critical exponents and the 
exktence of a phase transition, depend almost exclusively on the spatial dimension and 
the symmetry of the model. Many of these quantities have been accurately calculated, 
e.g. with momentum-space renormalization techniques. In addition to these so-called 
universal properties, there are also quantities such as the critical temperature, that do 
depend on the details of the geometry and the Hamiltonian of the model. In some 
cases real-space renormalition has been successful in calculating these properties. 
Also, various series expansion methods have achieved a high accuracy in examining 
some specific models. For quantum spin models, however, real-space renormalition 
runs into considerable difficulties, while series expansions cannot give a global picture 
of the whole phase diagram of more complicated models. This is why practically the 
only general method used to deal with such models is the mean-field approximation. 
Since this method gives only a crude approximation of the phase diagram, more 
sophisticated approaches are needed. In this paper we use a more refined method to 
calculate phase diagrams and to study the influence of the spatial dimension on the 
details of these diagrams. 

In order to study the influence of the dimension on the behaviour of a system, one 
may consider geometries that can be made to cross over between different dimensions. 
We will examine two quantum spin models that can be changed from two- to three- 
dimensional by varykg a parameter of the model. In the first model we consider 
how a collection of uncoupled two-dimensional layers changes into a fully isotropic 
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three-dimensional system as the inter-layer coupling is turned on, Second, we turn 
to a model consisting of a slab of n such layers, which becomes three-dimensional as 
its width approaches inSnity. For both models, we will examine the changes in the 
phase diagram as these parameters are varied. 

The specific spin model we will be studying is the spin-$ XXZ model. Its 
Hamiltonian is 

D J Bukman and J MI van Leeuwen 

32 = -Jij (a;lCq + U!b!)  - J ,  jju:u; - $ h ~ .  (1.1) 
( i j )  i = l  

The sum E(,.,) is over nearest-neighbour spins only, and the up are Pauli matrices. 
The spin coupling is anisotropic in spin space, ie. Jij  # J,  jj, and by choosing 
Jij  and .Izij to be different for different pairs of spins i and j, it can also be 
made anisotropic in real space. In addition to the coupling there is a homogeneous 
magnetic field h in the z direction. We will consider bipartite lattices only, so 
an antiferromagnetic phase can always be accommodated without having to take 
frustration into acmunt. For such a lattice we can assume that J i j  is positive, i.e. 
ferromagnetic, since the model is invariant under a change of sign of Ji j  [l]. (We 
do not consider cases where different Ji j  or J,  i j  have different signs.) 

The Hamiltonian (1.1) is of interest for two reasons. First, it is interesting in 
itself, having two competing interactions, J and .la, and both a continuous symmetry, 
for rotations of the spins around the z-axis, and a discrete up-dawn symmetry if 
h = 0. It also comprises various special cases like the Ising, Heisenberg, and XY 
models. Second, it is the Hamiltonian one obtains when writing a simple lattice 
gas model of a fluid consisting of interacting hard core bosons in the pseudo-spin 
formulation [1,2]. As such, it has been used to examine both superfluidity [U] 
and superconductivity [S-S], the latter in the framework of theories that assume the 
existence of preformed, real-space pairs in high-T, superconductors. Apart from the 
obvious interpretation of the spin model as a magnetic system in a layered or film 
geometry, one could then also make a connection with superconductors that consist of 
weakly coupled layers, or superfluid films of 4He. This model is much too simplified, 
however, to give more than a qualitative picture of such systems. 

The method we use to construct the phase diagram of the spin system is the cluster 
variation method using two-spin clusters. This method can be viewed as an extension 
of the mean-field approximation that also takes into a m u n t  the correlations between 
neighbouring s p h .  It is the quantum version of Kikuchi's variational method for 
classical spins [9-111, and it is essentially a mean-field-like method; e.g. it reproduces 
the mean-field values of the critical exponents. For getting a global picture of the 
phase diagram it is a considerable improvement over the mean-field approximation, 
which is one of the few general methods applied to the Hamiltonian (1.1) so far. 
The cluster variation method has turned out to give quite good results for the phase 
diagrams of filly isotropic two- and three-dimensional quantum spin models [12, 131, 
despite some unphysical behaviour at low temperature. 

In section 2 we will give a description of the cluster variation method, and then, 
in sections 3 and 4, apply it to the two geometries mentioned above. The results are 
discussed in section 5. 

2. General theory 

In this section we briefly outline the cluster variation method that is described in 
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more detail in 1131. The starting point of this method is the variational principle for 
the free energy T as a functional of the density matrix p of a system 

TIpl=Tr(p~)+lcgTTr(p ln~) .  (21) 

The density matrix must satisfy T r p  = 1, and for the true density matrix pa that 
minimizes T one finds for the free energy 

F=minT[p]=7[po]  = E-TS. (2.2) 
P 

An approximation can be made hy expanding 7 in cumulants, and only considering 
the reduced density matrim p p )  for a limited set of small clusters C. The reduced 
density mauix for a cluster C mntainiig II spins is 

where all spins not in C are traced out. We will limit ourselves to clusters consisting 
of single spins and nearest-neighbour pairs. 

For a Hamiltonian Like (1.1) that only contains on-site terms hi1) and nearest- 
neighbour interactions h$), one can, in this approximation, express T in terms of 
p p )  and p$) as follows: 

where the so-called cluster entropies S,!') and 5':;) are defined as 

These quantities are the most convenient from a calculational point of view, since 
they involve only a single reduced density matrix. All equivalent clusters have the 
same cluster entropy, and the number of non-equivalent clusters is determined by the 
geometry of the lattice and the phase that one wants to describe. In order to have the 
possibility to describe an antiferromagnetic phase we must at least distinguish between 
Si:) and Si;), where a and b are the two sublattices of the bipartite lattice. In a 
more mmplicated geometry there will be more types of one-spin clusters, and also 
several different types of nearest-neighbour pairs, each with its own cluster entropy 
S$). This will be the case when we consider the anisotropic and layered geometries 
in sections 3 and 4. 
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What remains to be done is to fmd a suitable parametrization for the reduced 
density matrices. In dealing with a spin-? system one can always express these 
matrices in terms of Pauli spin matrices: 

p w  = t 1 + C(cpuq + C p T j ” )  + CCij U; U .  I @) (a ,P=z ,ar ,x ) .  
11 L 4 

The functional F is now a function of the parameters cp and c$@. These parameten 
are just the averages of the spin operators, cp = T r ( p i ’ ) u p )  = (e), and Iikewise 
c’?! ‘I = (a?<). From the symmetry of the Hamiltonian and of the phases under 
consideration one can deduce two properties of these parameters. First, not all of 
them are independent (e.g. one can take cf = cy and cfr = c!,? e tc  because of 
the rotation symmetry around the x-axis in spin space of (1.1)). Second, some of 
the parameters are characteristic of the ordered phases of the system, i.e. they are 
only non-zero when a symmetry in the Hamiltonian is spontaneously broken. The 
most important of these is the order parameter of the ordered phase. We will refer 
to these parameters characteristic of an ordered phase as ‘order‘ parameters. The 
parameters can be classified accordingly: 

(i) In the disordered, high temperatun: phase only c r  and cf; and, provided that 
h f 0, the magnetization mi E, $(e;= + c ; ~ )  are non-zero. There is no spontaneous 
breaking of any of the symmetnes of the Hamiltonian. 

(ii) For negative values of J,  the system can order antiferromagnetically in the x -  
duection. The order parameter of this antiferromagnetic king phase is the staggered 
magnetization ma E $(cfa  - c$~). 

(iii) If the r y  rotation symmetry is spontaneously broken, the system has a non- 
zero magnetization in the z y  plane. The order parameter for this r-y ordered 
phase is c?, while the other ’order’ parameters are cT;, c f [ ,  and c z .  

(w) In the case that h = 0 there is a phase where the s p m  order spontaneously in 
the zdirection. The order parameter for this ferromagnetically ordered Wig phase 
is mi. In the following we will generally assume that h # 0, and occasionally make 
a remark concerning the case h = 0. 

We can express the reduced density matrices in these parameters as follows (the 
bases {\+),I-)} and {/++),l+-),l-+),I---)] havebeenused): 

pm = 
I J  

l + c f + c j + c ” ’  ( l - i ) ( q + C = )  ( l - i ) ( c T + c ’ = )  -2ic”Y 
(1 + i)(cT + 2”) 

2ic‘Y 

1 + c i  - q - c” 
2c- 

(1 + i ) ( q  - c = q  

2c- (1 - i ) ( c r  - c“”) 

1 - cf - cj” + cas 
(1 + i ) ( c r  + czz)  1 - cf + 9 - czz  ( 1  - i)(cj” - c” ) 

(1 + i)(c,O - c Z 2 )  
(28) 
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where we have, for clarity, omitted the label ij for the parameters c$ in the ex- 
pression for &). While it is easy to calculate the energy part in (2.4) with these 
expressions, for the entropy part we need to evaluate traces like 

where A, are the eigenvalues of the matrix p. It was shown in [I31 that, if one is only 
interested in locating the phase boundaries, it suffices to calculate the eigenvalues 
perturbatively up to second-order in the z-y 'order' parameters 4, q;, and cff. 
For a Eontinuow transition one can then find the boundaries between the ordered 
phases and the disordered high temperature phase, since these parameters are small 
near the phase boundaries. The first order term A: turns out to be zero, and one 
finds for the eigenvalues 

A, = AO, + A; + 0 ( 8 ~ )  (210) 

and hence for the trace (29) 

T r ( p l n p ) = x A k l n A ,  = ~ ( X ~ + A ~ ) ~ ~ X ~ + O ( C ~ ~ ) .  (211) 
k k 

The eigenwlues p one finds in this way for p y )  are 

ppl = 4(1+ cf) pp2 = i ( 1 -  cf) 

?b zeroth order the eigenvalues X i j  of p$) are (again dropping the label ij) 

A; = $(l+ 6 + c; + 8") 
A; = i { 1  + [(cf - c;y + 4c""2]1/2 - .""} 

A, 0 - 1  - 4 { 1 - [( cf - c y  + 4 c z q  - c.2) 

A 4 - 4 1  0 - L( -.f- c; + ...). 

The second-order terms are 

(2.12) 

(2.13) 

(2.14) 

with m = 2, n = 3 for k = 1, 4 and m = 1, n = 4 for k = 2, 3, and where 
defined by 

is 
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The Pkm are given by 

D J Bukman and J M J van Leeuwen 

On substituting all this into expression (2.4) for F one finds for the free energy 
functional per spin 

where 

(2.17) 

(2.18) 

After also expanding this expression to second-order in the other 'order' parameters 
(like ei), it can be separated into two terms. The first one, an, only contains the 
parameters associated with the disordered phase, c y ,  c:J, and mi,  while the other 
one, cp2, is bilinear in the various 'order' parameters. (If one wants to consider the 
case h = 0, one should expand to second-order in mi too, and include mi in the 
set of 'order' parameters.) iP can now be writtent 

(2.19) 

where c is a vector containing all 'order' parameters, and M is the symmetric matrix 

cp = cpn + @2 + 1 . .  = cpo + cTMc+.  .. 

The matrix M itself only depends on the parameters of the disordered phase, cT;, 
cfJ, and mi. Since iPz does not contain terms that are a product of 'order' param- 
etem for different phases, the matrix M is block diagonal. It contains a block MM 

t Nole that lhe de6nition of Q z  b different from IhaI in [13]. 
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corresponding to the ‘order‘ parameters of the antiferromagnetic king phase, a block 
MXY for those of the r y  ordered phase., and in the case h = 0 a block M” for the 
ferromagnetic Ising phase.. 
Now the “ i z a t i o n  of @ in the disordered phase boils down to minimizing a0, 

since the minimization with respect to c gives the equation Mc = 0,  which in this 
phase has the trivial solution c = 0, i.e. all ‘order’ parameters are zero. In an ordered 
phase, on the other hand, there is also a solution for the minimization equations for 
@ with some elemenor of c non-zero. The two solutions bifurcate for det M = 0,  so 
this is the equation giving the phase. bounday. Since M is block diagonal, the three 
different phase boundaries follow from 

det MP = 0 (221) 

with P = AI, xu, FI for the antiferromagnetic Ising phase, the z-g ordered phase, 
and the femmagnetic Ising phase, respectively. The procedure for finding the phase 
boundaries is thenlirst to solve the minimiition equations for Q0 for the disordered 
phase ody, substitute the result into M, and then to solve (221). In some cases, e.g. 
when the field h is zero, this can be done analytically, but if necessary the whole 
minimization can be done numerically. 

3. The spatially anisotmpic geometry 

RI apply the method described in the previous section to a specific geometry, one only 
needs to identify the different types of clusters, and count how often they occur in the 
lattice. As a first example we will consider a cubic lattice with a spatially anisotropic 
interaction, The lattice consists of a collection of parallel quadratic planes, and the 
coupling between spins that lie in the same plane is different from the coupling 
between spins in adjacent planes. We will take the coupling within the planes to be 
larger than that between planes, so one has a stack of (more or less) weakly coupled 
layers. By varying the ratio of the inter-layer and intra-layer couplings from zero to 
one, the system changes from a collection of uncoupled, two-dimensional quadratic 
lattices to an isotropic threedimensional cubic lattice. 

3.1. The calculation of MP 

For this geometry the Hamiltonian (1.1) reduces to 

N 

+ - J l ( u ~ u ~ + u ~ u l y ) - ~ ~ l u q u ~  - x h v f .  (34 
( i j ) l  i=1 

The summation C(ij)ll extends over all nearest-neighbour pairs of spins inside the 
layers, while the sum C(ij)l runs over nearest-neighbour pairs that lie in adjacent 
layers. The couplings Jll and J ,  11, and Jl and J ,  are the intra-layer and inter-layer 
couplings, respectively. 

Apart from the distinction between the sublattices a and b, all sites of the lattice 
are equivalent. There are, therefore, two one-spin reduced density matrices, pi*) and 
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pp),  and two corresponding cluster entmpies, Si') and Sf). There are also two 
different types of two-spin clusters, since in this geometry a cluster of two spins in 
the same layer is not equivalent to one of two spins in adjacent layers. Thus one has 
two two-spin reduced density matrices, p f )  and pf), and two cluster entropies, Sf) 
and Sf). Consequently, one finds for the energy terms in (24) 

D J Bukman and J M J van Leeuwen 

= - ~ ( 4 ~ ~ ~ c ~ ~ 2 ~ , , ~ c ~ + 2 ~ ~ c ; l + + ~ ~ c ~  t m h )  ( 3 4  

since out of the 6 neighbours of a particular spin 4 lie in the same layer, and 2 lie in 
adjacent layers. For the entropy one simiarly finds 

= k ~ N [ - f  Tr(pb')lnp~))+2Tr(p~)lnpli2)) 
q=a,b 

+ n ( p Y ) l n  p f ) ) ]  . (3.3) 

The disordered phase is described by five parameters: m, c y ,  c l Z ,  e?=, and c y .  
The values of these parameters can he found by minimizing Bo, which in this w e  is 
given by 

Q 0 =  - ( 4 K , l e ~ + 2 K z l l c ~  +2KLcT;+ K Z L c ~ + m N )  

- 5P(') + 2 P y  + Py'  . (3.4) 
The contniutiom from the three terms in (3.3) are obtained by setting the 'order' 
parameters equal to zero in the eigenvalues of the density matrices. This gives 

The eigenvalues A: in the disordered phase are simply the expressions (2.13) with 

Performing the minimization with respect to cy-, we find that the equations for 
c? = c? = m. 

* I  

C =I[ and C =I decouple, and that they are the same apart from an overall factor, 
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Equations (3.6) can be solved, and the result is the same as that for an infinite 
isotropic lattice [13] 

where 

The result of ” k i n g  in m is 

-ao a = -€I -I- - a (-5P(1) + 2 P f )  + Pp) 
am am 

1 + 2 m + c r  1 + 2m + c y  
1 - 2m + c y  + i l n 1 - 2 m + T  = - H - $ l n -  = O  l + m + l n  

1 - m  

(3.9) 

This equation should be solved, together with (3.7), to give m as a function of H, or, 
if m is considered as an extemally imposed parameter, it gives the field H required 
to produce that value of m. 

The second-order term Q2 is 

G2 = cTMc (3.10) 

where the vector cT = (a, cl, q”, e) contains the ‘order’ parameters The matrix 
M is a block diagonai matrix consisting of a 1 by 1 block MMU, giving the coefficient 
of the term quadratic in a, and a 3 by 3 block MXY coupling the other three ‘order’ 
parameters, (I?, cp , cy) 

and 

(3.11) 

(3.12) 
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where 
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(3.13) 

If one wants to consider the case h = 0, m must be set equal to zero in Q0, and 
included in the vector c M will then also contain a 1 by 1 block Mm giving the 
coefficient of m', which is equal to 

2 +- M" = -5 + - 4 
1 + C y  l+cy '  (3.14) 

F i g "  L ?be pharc diagram for the spatially anisotropic gmmeuy. The phase boundaries 
have bccn d r a w  for 9 = 0 (. . . . . .), l/4 (- - -), 1/2 (- - -), 3/4 (- . -), and 
1 (-). The magnetic Beld H is EAU. 

3.2 Rearlcs 

The phase diagram we obtain for this geometry is shown in figure 1 for different 
values of the spatial ankotropy q, and the magnetic field H equal to zero. We 
will always take the anisotropy in spin space equal for the intra-layer and inter-layer 
couplings, so that for the spatial anisotropy we have q = K,/KII = KzL/Kzll .  
The two-dimensional case is recovered for q = 0, and the three-dimensional one 
for q = 1. The other three values, q = 1/4,1/2,3/4, interpolate between these 
two. The structure of the phase diagrams is roughly as follows: at high temperatures 
(around Kll = KZII = 0 )  the system is in the disordered phase (D). The ordered 
phases one h d s  at lower temperature are the ferromagnetic Ising phase (FI) for 
KzII > KII > 0, the antiferromagnetic Ising phase (AI) for -KSII > Kit > 0, 
and the z-y ordered phase (XY) for Kll > I K, II 1. The boundaries between these 
three phases and the disordered phase follow from the equations det  MP = 0. For 
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€I = 0 the Ising phases are separated from the XY phase by the l i e s  KIl = IC,,, 

As q IS mcreased from zero to one, the disordered region (D) shrink, the phase 
boundaries moving towards lower values of K (higher temperatures). The general 
shape of the disordered region changes little; for the Ising, XY, antiferromagnetic 
and femmagnetic Heisenberg models one has K! < Kcm < Km < Kcm for most 
values of q. WO qualitative changes take place. First, the Critical coupling of the 
ferromagnetic Heisenkg model, which is infinite in two dimensions, becomes finite 
as soon as the inter-layer coupling is turned on. This is consistent with the fact that the 
lower Critical dimension of this model is 2. Second, the antiferromagnetic Heisenberg 
model does not exhibit a phase transition for q 5 1 /4. This is related to the fact that 
the cluster variation method, and similar approximations, predict a spurious phase 
transition at low temperatures [12,13,14]. As the temperature is lowered, both the AI 
and m order disappear, and the system remains disordered down to T = 0. For low 
dimensions, and in this case for small 7, this artifact of the approximation interferes 
with the phase transition at higher temperature. So, unfortunately, no conclusions 
can be drawn about the behaviour of the antiferromagnetic Heisenberg model near 
two dimensions, which is of great interest in connection with theories of high-T, 
superconductors. For q 2 1/2, this unphysical transition takes place at such a low 
temperature that it is clearly separated from the physical ones, and the phase diagram 
is barely ineuenced by it. In fact, for the three-dimensional isotropic case (q = I), it 
turns out that the accuracy is quite good when compared to high temperature series 
expansions. 

and KII = -+. 11- 

_ -  
O .25 .5 .75 I 

n 
P@rt 2. The critical temprratum for the spatialiy anisotropic geometry, as a function 
of q. The values of k ~ T , / l J l  have been plotted for some special e&~es of the XXZ 
Hamiltonian, viz. king (U), XY (x), antiferromagnetic Heisenberg (A), and ferromagnetic 
Heisenbug (0) interactions. The lines have only been drawn to guide lhe eye. 

In order to show the change of T, from its two-dimensional value to that for three 
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dimensions, figure 2 shows a plot of !q,T,/IJI = l/lKi versus the spatial anisotropy 
11. The values given are for some special cases of the Hamiltonian (3.1), namely the 
king, XY, antiferromagnetic and ferromagnetic Heisenberg models. 

D J Bulonan and J M J van Leeuwen 

4. The slab geometry 

Another geometry that shows a aoss-over from two to three dimensions is that of 
a slab consisting of a finite number, n, of simple quadratic layers. We will take the 
coupling constants equal in all directions, and by letting n run from 1 to 00 the system 
changes from a twodimemional simple quadratic lattice to a three-dimensional cubic 
lattice. The Hamiltonian is basically given by (l.l), with Ji. = J, Jzjj = Jz, a 
homogeneous magnetic field h, and the sum running over n iayers contaming N / n  
spins each. The top and bottom layers have free boundary conditions. A similar 
calculation for the king model can be found in [IS]. 

4.1. The calculatwn of MP 
Since the slab has only a finite thickness, there is no translation symmetry in the 
direction perpendicular to its surface. Therefore all n layers (which we will indicate 
by an index r running from 1 to n) are different, except for a reflection symmetry in 
the middle plane of the slab, so that layers T and n + 1 -T are equivalent. Quantities 
that refer to one layer only, like the one-spin cluster entropies and the cluster entropy 
for two spins in the same layer, will be given an index r indicating the layer they 
refer to. Quantities that refer to two adjacent layers, like the cluster entropy for two 
spins in different layers, will also be given an index r, now indicating that they refer 
to layers r and T + 1. For these quantities the reflection symmetry means that those 
labelled T and n - r are equivalent The two sublattices necessary for the description 
of an antiferromagnetically ordered state are defined on the cubic lattice, so that a 
site on sublattice a in layer T is adjacent to sites on sublattice bin layers T - 1, r+ 1, 
and T. 

For each layer T we consequently have two one-spin cluster entropies, S:'? and 
S;?, and one cluster entropy for two spins within the layer, S$. There are two 
cluster entropies for spins in different layers, S 2 a  where the spin in layer r is on 
the a sublattice and the one in layer r + 1 on the b sublattice, and S$&, where this 
is the other way round. 

For the free energy functional @ this leads to the expression 

The last term is a correction due to the fact that the top and bottom layers have only 
one neighbouring layer. In the disordered phase the non-zero parameters are m,, 
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c:;, and qii for every layer, and c;; and c:i for every pair of adjacent layers- - - (c;;~ + c;yb)/2.  Hence we find for a,, 

where 

(4.3) 

In the disordered phase, the eigenvalues Atll k, where both spins in the cluster are 
in layer r, are obtained from (213) by setting cf = c; = m,. For two spins in 
adjacent layers, r and r + 1, we get A:l. from (2.13) by setting cf = m, and 
c4 J = The presence of the magnetization profile m, prevents us from treating 
the disordered phase analytically, so the minimization in the presence of a field H 
has to be done numerically. If H is zero, however, and consequently there is no 
magnetization, an analytical treatment iF possible. This will be done in the following 
section. 

The second-order term a2 is again of the form Q 2  = cTMq where now cT = 
( -  m,, ~ ” ”  , 6’” , c: , cri ,  el, CEZ) contains a large number of ‘order‘ parameters. For 
the antiferromagnetic Ising phase there is the staggered magnetization m, = (c:,, - 
Cb) /2  for each layer. In addition, the quantities = (c:& - c:Fb)/2 are also 
non-zero when the two sublattices Q and 6 are different, which gives rise to these new 
‘order‘ parameters. For the z-g ordered phase c contains the magnetization in the 
x-y plane, e:, the intra-layer correlation c 7  , and the two inter-layer correlations 
c:f and e:?. For the case h = 0 the parameters mp must be set equal to zero in 
a,, and included in c as the ‘order’ parameters for the ferromagnetic Ising phase. 
The structure of the matrices MP is given in the appendix. 

4.2 The case H = 0 

In general the determination of the phase boundaries for the slab geometry must 
be done numerically, but if H = 0 one can proceed analytically, as we will first do 
for the 2)-y phase boundary. In this case the description of the disordered phase 
simplifies due to the fact that there is no magnetization profile mp. For H = 0 and 
na, = 0, equation (4.2) becomes 
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with 

because there is only one term in (4.4) containing the parameter e;;. Moreover, 
apart from an overall factor of 2, the dependence of f$ on e; is the same for any 
r and C. So, as in (3.6), we find for all r and C 

The expressions P?) only depend, through (4.3) and (2.13), on c;.f and c;;. The 
equations (4.7), that determine the correlations c;:, can be solved independently of 
T and C. The solutions one finds are again just the same as in the case of an infinite 
lattice, namely 

elK* - cosh 2K c’” - p - 
eZK- + cosh 2 K 7< = - 

s i n h 2 K  c z I  - 
eZK. + cosh 2K . 

To find the phase boundary, we calculate the second-order term 

(4.8) 

(4.9) ,( = CZZ = 

of the free 
energy functional, 

(4.10) 

and, using equation (4.7), 

K ,  - K 
1 = 2(c22 - f23 

K , + K  
V =  

2 ( P  + CY”) ’ 
(4.12) 
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Minimizing @2 we 6nd the system of equations a d 2 / & $  = 0, which turns out to 
be 

big+ a 4  = 0 

+ b e  + ac>, = 0 

+ blcz  = 0 

(1 < r < n )  

with 

(4.13) 

(4.14) 

The system (4.13) admits solutions of the form c; = ay'. From the equation for 
1 < P < n we 6nd 

a(yv-' + y*') + byp = 0 (4.15) 

or 

-b  f @=@ 
2a Y* = (4.16) 

c:=crY;+PYr. (4.17) 

Substituting (4.17) into the equations for the boundary layers then gives 

(4.18) 

The trivial solution a = /3 = 0 gives the disordered phase, where the magnetization 
is zero; at the point where the determinant of the coefficients vanishes, the solution 
bifurcates, and this signals the transition into the z-y ordered phase. 

It follows from (4.15) that y+y- = 1, and for b2 > 4 2 ,  yi are real. For ba < 
4aa they are complex conjugates, so y+ = e-'+, y- = e'+. For high temperatures 
one finds that b2 > 4a2, giving real yi. Lowering T,  one comes to a point where 
b2 = 4a2, and y+ = y- = 1. This happens at T,(oo), the critical temperature for the 
iruinite cubic lattice. Due to translation invariance, the spontaneous magnetization of 
this system is homogeneous. The equation b = -2a is equivalent to 

eZK' + cosh 2 K  
= 5  6 ( K z  - K ,  e2K. - .ZK (4.19) 
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which is indeed the equation for the phase boundary of a system with coordination 
number z = 6 as found previously [13]. At T,(co) a layer of finite width is still 
disordered, since the bifurcation of the solution of (4.18) has not yet taken place. + @e'.*, with 
tan 6 = d-. me determinant of (4.18) then gives 

(4.20) 

The solution with 4 = 0 corresponds to the bulk transition temperature Tc(w), and 
does not indicate a phase transition in the finite slab. This transition corresponds to 
the first non-zero value of 4 satisfying (4.20), which is a solution of 

(4.21) 

Hence we find that the solution of (4.21) corresponding to the smallest non-zero 
value for 4 gives the critical temperature T,(n) of an n-layer slab. In the limit of 
large n, the value of 4 a t  T,(n) approaches its value for the infinite lattice, 4 = 0 
at T,(w). By expanding (4.21) for small 4 and large n we find that 4 goes to zero 
as FJ r / ( n  + q),  with q given by q = - (3a + b l ) / ( a +  b,) calculated at TC(w). 
It can be shown that q 

In addition to the critical temperature, we also find the shape of the order param- 
eter profile c: at the onset of the ordered phase. The normalization is determined 
by the higherader terms of @, but since af T,(n) the amplitude is zero anyway, the 
shape of the profile is the only quantity of interest. We first observe that, in order to 
have a real-valued magnetization, we must have p = a', so 

c: = lal(e-'(""++o) + ei(r4+40)) = 21alcos(r4 + 40) .  (4.22) 
The angle $o can easily be found from the symmetry requirement that c: = c:+ , -~ ,  
which gives @o z 0 - n/Z  = -(n + 1)4/2, and 
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Below x(w), we have g+ = e-'+ and y- = ei4, so c: = 

( b ,  + ae-W)2 = e-Z(m-1)i4 (b, + ae'd)' . 

b, + ~ e - ' 4  = -e-(n-'1)i4(b1 +a@) .  

0 for all K and Kz. 

c: = 21alsin(r+ + 8).  (4.23) 
Exactly the same treatment can be applied to the ferromagnetic and antifemo- 

magnetic king phases; the only difference lies in the expressions for a, b, and b,. For 
the ferromagnetic king phase they are 

10 K b = -  +2--10 1 + c= C" 

9 K 
bl = - + - - 8  1 + csx c=5 

and for the antiferromagnetic Ising phase 

10 
K 2 b = l O - +  -- 

CX' 1 + c= 

8. K 1 6, = 9- + - - 
C"= 1 + c= 

(4.24) 

Using equation (4.21) combined with (4.15), (4.24) and (4.25) we can construct the 
phase diagram for H = 0. 
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K 

Figure 3. The p h s e  diagram for the slab gwmetly. Phase boundaries are given Cor 
R = 1 (.. ....), 2 (- . -), 3 (- - -), 4 (- . -), and m (-). Thc magnetic field 
Hiszero. 

............ CI ................. a 0 

x 

0 

0 

c3 5 ................. .......... 
.................. x ........... 
................. e ....................... 
............... 0 .......... 

Flgurr 4. The critical temperature for the slab geomelly for various values of n. The 
values of ksTc/lJI have been plotted for some special cases of the XXZ Hamilto- 
nian, viz Iring (U), XY (x), antiferromagnetic Heisenberg (A), and ferromagnetic 
Heisenberg (0) interactions The lines are guides for the eye. 

4.3. Results 

The phase diagram we find for the slab geometly is shown in figure 3 for n = 
1,2,3,4, and CO and H = 0. For the two- and threedimensional cases n = 1 
and n = CO they are of course equal to the results for the infinite lattices with 
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Plyre 5. The order panmeter pm6le C: near T, in a 3Qlayer XY slab (K. = 0). For 
n = 30, the critical mupling is K. = 0.2243. giving 9 = 0.09873 and 8 = 0.04045. 
The solid line show sin(r++8), waled to malch the result of a numerical minimization 
slightly below T, (at K = 0.2244), which is @en Ly the dotted cuwc 

coordination number z = 4 and 6, respectively, while the double layer corresponds 
to the case x = 5. me basic features of the phase diagram are the same as in 
section 3, with in this case the unphysical gap around IC;, ,I = -K disappearing for 

dimensions. 
For this geomeay we also calculated the order parameter profile in the layer. In 

particular for the z-y ordered phase this is of interest, since the order parameter c: 
(indicating offdiagonal long-range order) corresponds, in the pseudo-spin formulation 
of the quantum lattice gas [l], to the superfluid condensate wavefunction. It was 
shown in the previous section that the shape of the order parameter profile at T, is 
given by sin(rq5 + e). In figure 5 we show the profile for the XY model in 
a slab of n = 30 layers. The Critical coupling for this thickness is ICc = 0.2243, 
which corresponds to q5 = 0.09 873, and 0 = 0.04 045. As a comparison we have 
also drawn the result of numerically minimizing the full free energy functional at a 
coupling slightly below T,, K = 0.2 244. The plots have been scaled so as to coincide 
at their maxima. Obviously the approximations made in section 4.2 hold in a small 
temperature range below T,. For temperatures further below Tc, the magnetization 
c: starts to saturate in the interior of the slab, and since this behaviour is governed 
by the higher-order t e r m  in @ the order parameter profile is no longer sinusoidal. 

Some conclusions we can draw from the behaviour of c: near T, are, first, that 
all order parameters become non-zero simultaneously at the same temperature, so 
there is no separate surface transition. Second, the order parameter drops almost 
to zero at the slab boundary; in fact the profile goes through zero at lpo = ( n  + 
1) /2 - r/2@, which is immediately outside the slab. In the limit n -+ 00 we find 

n > 2. Figure 4 again displays the behaviour of T, when going I rom two to three 
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1 " " ~ " " " " ' ~ ' " 1 ' ' ' 1 ' " 1 ' ' ' 1  

Figurr 6. The order paramcler profile c: in a Wlayer xy slab for K = 0.225 (. . . . . .), 
K = 0.23 (- - -), and K = 0.25 (-). The crifical coupling for n = 30 is 
K, = 0.2243. Also plolud are Ihe values of c; in a threedimensional latlice at lhe 
same coupling strengths (open symbols). 

that = ( 1  - q)/2 < 1/2. This supports a proposition that was made recently [16], 
that the use of DirichIet boundary conditions in finite-size scaling theory would be 
fairly realistic 

Further away from TC, we observe that there are two effects that suppress the 
value of the order parameter in a layer with respect to its value in a threedimensional 
lattice. For any temperature, its value will be lower in the outer layers, because of 
the proximity of the free boundary layer. Second, for temperatures just below T,, 
the order parameter will be smaller than its threedimensional value over the whole 
width of the slab, because T, for the three-dimensional system is higher. For low 
enough temperatures, the magnetization takes on its threedimensional value in the 
inner layers of the slab. The order parameter profile for a 30-layer slab is plotted in 
figure 6 for various values of K for the XY model (IC, = 0). 

5. Discussion 

lb examine the merits of the cluster variation method applied to these spin models, 
we will compare its results with those of other approaches. We first examine the king 
transition, since the Ising model is both the simplest and the most intensively studied 
model described by a Hamiltonian of the form (1.1). The king model is known to 
have ordered phases with a non-zero magnetization in two and three dimensions, and 
in both dimensions the cluster variation estimate of T, is considerably better than 
that of the mean-field approximation. Hence one would expect its result to be an 
improvement for the slab geometly, too. This is indeed the case, as is shown in 
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Rblc 1. TBc aitical tempuaturc for an king model (K = 0) dab EonskIing of n layur. 
listat llir the man-field catimatc ksT.1 J,  = 6- Z/n, the rcault of the Iwoapin cluster 
variation method, and Ihe suics apandon result of Capehart and Fisher [17]. 

R Mean-field CVM Scrics 

1 4  2.89 2.21 
2 5  3.92 3.23 
3 533  432 3.65 
4 55 452 3.88 

6 5.61 4.11 4.14 
7 5.11 4.16 4.21 
m 6  4.93 451 

5 5 6  464 4.m 

table 1, where we compare the results of these two approximations with those of 
series expansion techniques [17] for the pure Ising case IC = 0. Similarly, for the 
spatially anisotropic geometry one would expect the cluster variation result to be 
an improvement over the mean-field estimate kBTc/JII 1: = 4 + 27. Thus the king 
transition seems to confirm the pattern one usually finds for classical models: the 
two-spin cluster variation method overestimates Tc, but much less than the mean-field 
approximation. In turn, the cluster variation result can be expected to improve when 
one uses larger clusten. Also, as long as the Hamiltonian is king-like (I( ,  > K 2 0), 
there is no unphysical transition back to the disordered state at low temperature. 

The situation for the zy transition is more complicated. For the slab geometry 
one expects a transition to a phase that does not have a magnetization, since it 
is hown that such a phase cannot exist at T # 0 in a finite slab [18,19]. This 
phase might have topological order a la Kosterlitz-Thouless 1201. For thick slabs the 
transition should cross over to a threedimensional r-y transition. For the anisotropic 
geometry, on the other hand, a three-dimensional I-y transition is expected, only 
crossing over to a two-dimensional transition in the l i t  of uncoupled layers. The 
cluster variation method is not capable of producing a topological phase transition 
in these situations, and yields, as a refined mean-field method, transitions to an r-y 
phase with a non-zero magnetization. Only the location of the critical temperature can 
be meaningfully extracted from the cluster variation method. As it agrees reasonably 
lor the pure XY model (K, = 0), we may expect that in the general case K, # 0 it 
also gives a good description of the phase boundary. The fact that the behaviour of 
T, as a function of n is qualitatively simiiar to that for the Ishg model is confirmed 
by renormalization group studies [21]. 

The situation near the Heisenberg model (Kz = &IC) is particularly delicate. 
In the slab geometry, being basically two-dimensional, the transition point should 
diverge to Kc = CO for all slabs of a finite thickness. In the anisotropic geometry 
Kc stays finite for all anisotropies except for the case of uncoupled layers. "b a 
certain extent the cluster variation method shows this picture for the ferromagnetic 
Heisenberg model. It gives a transition temperature T = 0 for the two-dimensional 
case, but finite transition temperatures in all other cases. It gives an increase of K, 
for finite layers near the Heisenberg model, but fails to produce the divergence of 
K, (or T, = 0). 

For the antiferromagnetic Heisenberg model the picture is similar but blurred by 
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W k l .  The wltsof  the clustervarialion method compared with those of the mean field 
approximation and of &a apansion techniques 122). Shown are the crilical couplings 
for the Ising, XY, anlifemwnagnetic Heisenbeg and ferromagnetic Heisenberg model%, 
on a simple quadratic ( I  = 4) and a simple cubic (I = 6) lattiro. 

Simple quadratic Simple Cubic 

Mean-field CVM Series Mean-field CYM SeriCS 

I 0.25 0347 0.441 0.167 0.203 0.222 
m 0.25 0.451 0.635 0.167 0224 0.248 
AH 0.25 - - 0.167 0.246 0.260 
PH 0.25 m m 0.167 0.275 0.298 

the interference of the spurious disordered phase at T = 0. The fact that for layer 
thicknesses below n = 3 the transition temperature drops to zero cannot be Seen as a 
virtue of the cluster variation method, since it gives a similar behaviour for sufficiently 
anisotropic geometries. Incorporation of long wavelength fluctuations is an essential 
ingredient to improve the phase diagram at points where higher symmetries of the 
model drive the phase transition to T = 0. 

A further comparison with series expansion results (221 is shown in table 2 for the 
two- and threedimensional infinite lattice. In all cases the cluster variation method 
gives a considerable improvement over the mean-field result. Also, whereas the mean- 
field approximation gives the same value of IC, for all models listed in table 2, the 
cluster variation method has K: < Kcm < Kcm < K,F”, in accordance with the 
series results. We may conclude that while the cluster variation method does not 
always give a good description of the phase transition, its estimate for the critical 
temperature is in general quite good. Especially in cases where it is not feasible to 
examine the whole phase diagram by more sophisticated methods, it is a useful tool. 
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Appendix 

In this appendix we give the structure of the matrices MP for the slab geometry 
described in section 4. Due to the reflection symmetry there are w different layers 
in an n-layer slab, with w = n/2 for even n, and w = (n  + 1)/2 for odd n. 
Quantities that pertain only to one layer will, therefore, give rise to w independent 
‘order‘ parameters, while the exact number of ‘order’ parameters for quantities that 
concern two layers depends on n being odd or even, and also on the effect of 
the reflection symmetry on these ‘order’ parameters. The matrices MP are always 
symmetric, MCj = MLj. The elements that are not given below, and that cannot be 
obtained from the elements given below by using this symmetry are all zero. As was 
already pointed out in section 4, for n = 1 and 2 the results are equivalent to those 
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for an infinite lattice with coordination number L = 4 and 5 respectively. Hence we 
will assume here that n is larger than 3. 

Fa the antifemmagnetic king phase the situation is as follows. The staggered 
magnetization, iir, for each layer, giyes rise to w different 'order' parameters. The 
quantities a:= and 6y give an additional w - 1 parameters, There is no a;-, since 
for even n the layers w and 10 + 1 are equivalent because of the reflection symmetry, 
and hence 6:- = 0, and for odd n, 6;" = 6zZ1. So in total the vector c contains 
3w - 2 parameters connected with the antiferromagnetic king phase; these elements 
of c will be ordered as follows: 

'3-2 = fir ( r  = I , . .  . ,w) 

Csr-l = 6:. ( r =  l,.,.,IU-l) (AI) 
%, = 6:' ( r = 1  ,. . . , w  - 1). 

In this notation the elements of MAI are, for r < w: 

+-In% 2 9 %I3 W1 
M1.1- 1 - m; 

2 2 A? 1 

4 2 j 3  

+ f (at + %@?) +. (1 - 3) rl 
-8 AI-- 

+ -In--J-+ 4 (0: + ZP:) + 4w, (1 - 5)  7,  
AI -10 

M3~-2,3r--2 = 
2 

1 4 - 1  

AI 

Mk!-2,3~ = f (a; - $@:) 
M$-2,3r+l = -$ (a!. - 

c"r2  

wr 
M3lf-1,3,-1 = +@ + 

C Z  0,- 

M34.3rCI = M e - 2 , 3 4  

M34,3, = i (4 + @:I 

Me-1,3r = -- 
w, 

AI 

From the last layer there is, for even n, a contribution 
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and for odd n 

"he followhg deEnitions have been used 

In the 2-y ordered phase there are w parameters c: and c 7  and w - 1 different 
parameters c:: and c::. Finally, if n is even, there is one additional parameter 
cyL = c;? because of the reflection symmetry. So in total c contains 4w - 2 
parameters for odd n, 4w - 1 for even n, ordered as follows: 

c4-3 = c: 
c4v-2 = c y  ( r = 1  ,...,wu) 

e,,-, = c:: 
c4r = ."p"l 

- - c2z wl 

( ? - = I ,  ..., w) 

( T =  l,.. . , w  - 1) 

(?-= 1,. . . , w -  1) 

(for n even). 

For the matrix MXY we find, for P < w 
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We have used the dehitions 

Finally, if h = 0, there are w parameters mp for the ferromagnetic king phase, 
giving a vector c: 

c P = m ,  (r=l, ..., w )  

and a matrix M" (for T < w):  

while for f = w and n even we find 

In 'o,-lLz (Alla) +- 2 1 
+ 1 + e - 1 1  4c;E,, ':-U3 

+ 8 M,1, = -10 + - 
1 + c q  l fc t f ,  

and for n odd 
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